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Viscoplastic fluids are widely used in industrial applications. They are characterized by 
a yield stress from which the fluid moves. The simplest representation of this type of 
fluids is the Bingham plastic. The purpose of this work is the numerical study by means 
of finite volume method, of heat transfer in forced convection of an incompressible 
viscoplastic fluid in a circular pipe maintained at uniform temperature. All the physical 
properties of the studied fluid are supposed to be constant. A subroutine based on the 
model of Papanastasiou was developed, in order to take into account the rheological 
behaviour of fluid of the Bingham type. The study is based on the influence of Reynolds 
number and the yield stress (Bingham number, Bn) on the coefficient of heat transfer 
represented by the Nusselt number. The comparison between the obtained results and 
those of Taegee Min et al. as well as those of Vradis et al. proves to be satisfactory. 
Key words: Bingham fluid, yield stress, finite volume method, forced convection. 
 
1. Introduction 
A Bingham fluid is a substance which exhibits a yield stress that must be overcome 
before it will flow. It has a particular nonlinear behaviour law. Actually, when these 
materials flow in a pipe, there may be a central region which moves as a solid (plug 
flow) but near the wall the usual parabolic velocity profile of a newtonian fluid is 
observed. 
 
Vradis et al. (1993) solved numerically the problem of simultaneous development of 
hydrodynamic and thermal fields in the entrance region of a circular pipe for a laminar 
flow of a Bingham fluid for which constant physical and rheological properties are 
assumed. They consider the flow with and without viscous dissipation and used a finite 
difference second-order accurate scheme in conjunction with a marching iterative 
solution technique. Min et al. (1997) studied numerically the hydrodynamically as well 
as the simultaneously developing laminar flows of a Bingham plastic in a circular pipe 
by using a four-step fractional method combined with an equal order bilinear finite 
element method. The latter found, for the simultaneously developing flow, that the heat 
transfer characteristics show the same trends as those predicted from the analytical 
method for the Greitz problem. 



The purpose of the present work is to study the laminar forced convection flow of an 
incompressible Bingham fluid in a circular pipe maintained at uniform temperature by 
means of a numerical method based on the finite volume. All the physical and 
rheological properties of the fluid are supposed to be constant. Effects of the Reynolds 
number and the yield stress on the coefficient of heat transfer represented by the Nusselt 
number are presented and compared with previous studies. 
 
2. The Governing Equations 
Let’s consider the laminar steady flow of an incompressible Bingham fluid inside a 
horizontal circular pipe of length L and radius rw maintained at constant wall 
temperature Tw and let’s suppose that all physical and rheological proprieties of the fluid 
are constant and uniform. 
 
The non dimensionalized governing equations for the three dimensional flow of the 
studied fluid in cylindrical coordinates are given by: 
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In order to avoid a numerical instability in the low shear rate region, Min et al. (1997) 
recommend to use the following constitutive equation proposed by Papanastasiou for 
which they advised to take m = 1000: 
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The resolution of equations (1-5) requires a set of boundary conditions. At the inlet, the 
flow is assumed to be uniform (V = W = 0, U = 1) as well as the temperature (φ = 1). 
No-slip conditions are applied at the wall (V = W = U = 0) and a parietal constant 
temperature is assumed (φ = 0). In addition, at the plane of symmetry (θ = 0), we 
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The numerical technique used in the present study is the finite volume method proposed 
by Patankar (1980). The governing equations are put in the form of an algebraic 
equation which is solved using the SIMPLER algorithm. Since the rheological 
proprieties are independent of temperature, the hydrodynamic problem is independent 
of the thermal one. 
 
3. Results And Discussion 
3.1 Validation of the computer code 
To validate our computing program, a comparison between the present numerical 
results and those obtained by Min et al. (1997) for a flow without viscous dissipation 
was done. The same hypothesis were taken for both studies except that Min et al. (1997) 
used the finite element method. 
 
This comparison is showed on Figure 1 which presents the variation of the Nusselt 
number according to the Greitz number for Pr = 1, Bn = 1.99 and Re = 5, 25 and 50. 
Good agreements are observed between the two studies since that the maximum error 
does not exceed 3%. 
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Figure 1: Comparison between the local Nusselt number resulting from the present 
study and that of Min et al. for various Re. Pr = 1, Bn = 1.99 
 
3.2 Effect of the Reynolds number on heat transfer 
Figure 2 shows the variation of the local Nusselt number according to the axial distance, 
for Pr = 1, Bn =1.99 and Re = 5, 25, 50, 75, 100 and 215. The curves present the same 
form: a pronounced decrease near the inlet then an asymptotic tendency to a same value 
of the Nusselt number independent of Re; this represents the fully developed conditions. 
On the other hand, the local Nusselt number as well as the thermal entrance are shown 
to be higher for higher values of Re. These results seem to be in agreement with those 
found by Min et al. (1997) and Vradis et al. (1993). 
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Figure 2 : Local Nusselt number with respect to the Reynolds number.  
Pr = 1, Bn =1.99. 
 



3.3 Effect of the Bingham number on heat transfer 
Figure 3 represents the evolution of the local Nusselt number according to the axial 
distance, for Re = 25, Pr = 1 and Bn = 0, 1.99, 3 and 5.65. The curves show a light 
increase in the value of the Nusselt number for the higher value of Bn, located at the 
fully developed region. But this effect remains, even so, weak given that the viscous 
dissipation was not taken into consideration in the present study. These observation was 
also made by Min et al. (1997) and Vradis et al. (1993). 
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Figure 3 : Variation of the local Nusselt number according to the axial distance for 
various values of Bn. Re = 25, Pr =1. 
 
3. Conclusion 
The study of the laminar forced convection flow of an incompressible Bingham fluid in 
a circular pipe maintained at uniform temperature was investigated by means of a 
numerical method based on the finite volume. In order to avoid a numerical instability 
in the low shear rate region, the viscosity model of Papanastasiou was adopted to 
describe the behaviour of the Bingham fluid. The validity of the present computing 
program was confirmed by comparing the results with those of the literature. 
 
The present results showed that the heat transfer characteristics, that is to say the 
Nusselt number and the thermal entrance, are strongly affected by the variation of the 
Reynolds number. On the other hand, the Bingham number presents a weak influence 
on the heat transfer characteristics in the entrance region because the viscous dissipation 
was not taken into consideration in the present study. 
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4. Nomenclature 

Bn Bingham number, τ0 R / μp V0 

Cp Specific heat at constant pressure. 
D Pipe diameter. 
k Thermal conductivity. 
L Length of the pipe. 
m Exponential growth parameter in equation (6). 
Nu Nusselt number, (-2/φm)(∂φ/∂R)⎢R=1 
p* Pressure. 
P* Dimensionless pressure, p*/ ρ V0

2. 
Pr Prandtl number, μp Cp / k. 
r Radial coordinate. 
rw Radius of the pipe. 
R Dimensionless radial coordinate, r / D. 
Re Reynolds number, ρ V0 D / μp; 
T Temperature. 
T0 Entrance temperature. 
Tw Wall temperature. 
U Dimensionless axial velocity, Vx / V0. 
V Dimensionless radia velocity, Vr / V0. 
V0 Average velocity. 
W Dimensionless azimutal velocity, Vθ / V0. 
x Axial coordinate. 
X Dimensionless axial coordinate, x / D. 
 
Greek symbols: 
γ&  Rate of strain. 
η Effective viscosity of the Bingham fluid. 
ηeff Dimensionless effective viscosity, η / μp. 
μp Plastic viscosity. 
ρ Density of the fluid. 
τ0 Yield shear stress. 
φ Dimensionless temperature, (T - Tw) / (T0 - Tw) 
φm Dimensionless bulk temperature, (Tm - Tw) / (T0 - Tw) 
 


